This dataset is UCDP's most disaggregated dataset, covering individual events of organized violence (phenomena of lethal violence occurring at a given time and place). These events are sufficiently fine-grained to be geo-coded down to the level of individual villages, with temporal durations disaggregated to single, individual days.

ucdp_19.1_df

Format

An object of class tbl_df (inherits from tbl, data.frame) with 152616 rows and 42 columns.

Source

https://ucdp.uu.se/downloads/index.html#ged_global/

References

  • Sundberg, Ralph, and Erik Melander, 2013, “Introducing the UCDP Georeferenced Event Dataset”, Journal of Peace Research, vol.50, no.4, 523-532

  • Högbladh Stina, 2019, “UCDP GED Codebook version 19.1”, Department of Peace and Conflict Research, Uppsala University

Examples

ucdp_19.1_df
#> # A tibble: 152,616 x 42 #> id year active_year type_of_violence conflict_new_id conflict_name #> <dbl> <dbl> <dbl> <dbl> <dbl> <chr> #> 1 67972 2013 1 1 11347 Mali: Govern… #> 2 23385 2004 1 3 583 FNI - Civili… #> 3 24255 2007 0 2 4600 CNDP - PARECO #> 4 82612 2008 1 1 364 India: Kashm… #> 5 82645 2008 1 1 364 India: Kashm… #> 6 158618 2011 1 1 354 Turkey: Kurd… #> 7 87396 1997 0 3 523 ULFA - Civil… #> 8 60774 2013 1 1 283 DR Congo (Za… #> 9 25360 2010 1 1 337 Somalia: Gov… #> 10 11995 2003 1 1 288 Chad: Govern… #> # … with 152,606 more rows, and 36 more variables: dyad_new_id <dbl>, #> # dyad_name <chr>, side_a_new_id <dbl>, gwnoa <dbl>, side_a <chr>, #> # side_b_new_id <dbl>, gwnob <dbl>, side_b <chr>, number_of_sources <dbl>, #> # source_article <chr>, source_office <chr>, source_date <chr>, #> # source_headline <chr>, source_original <chr>, where_prec <dbl>, #> # where_coordinates <chr>, adm_1 <chr>, adm_2 <chr>, latitude <dbl>, #> # longitude <dbl>, geom_wkt <chr>, priogrid_gid <dbl>, country <chr>, #> # country_id <dbl>, region <chr>, event_clarity <dbl>, date_prec <dbl>, #> # date_start <date>, date_end <date>, deaths_a <dbl>, deaths_b <dbl>, #> # deaths_civilians <dbl>, deaths_unknown <dbl>, low <dbl>, best <dbl>, #> # high <dbl>
dplyr::glimpse(ucdp_19.1_df)
#> Observations: 152,616 #> Variables: 42 #> $ id <dbl> 67972, 23385, 24255, 82612, 82645, 158618, 87396, 6… #> $ year <dbl> 2013, 2004, 2007, 2008, 2008, 2011, 1997, 2013, 201… #> $ active_year <dbl> 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, … #> $ type_of_violence <dbl> 1, 3, 2, 1, 1, 1, 3, 1, 1, 1, 1, 3, 1, 1, 1, 1, 3, … #> $ conflict_new_id <dbl> 11347, 583, 4600, 364, 364, 354, 523, 283, 337, 288… #> $ conflict_name <chr> "Mali: Government", "FNI - Civilians", "CNDP - PARE… #> $ dyad_new_id <dbl> 12571, 1050, 5210, 792, 792, 781, 990, 10509, 750, … #> $ dyad_name <chr> "Government of Mali - MUJAO", "FNI - Civilians", "C… #> $ side_a_new_id <dbl> 72, 606, 426, 141, 141, 115, 326, 89, 95, 87, 112, … #> $ gwnoa <dbl> 432, NA, NA, 750, 750, 640, NA, 490, 520, 483, 625,… #> $ side_a <chr> "Government of Mali", "FNI", "CNDP", "Government of… #> $ side_b_new_id <dbl> 1161, 1, 896, 325, 325, 323, 1, 1200, 717, 452, 469… #> $ gwnob <dbl> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,… #> $ side_b <chr> "MUJAO", "Civilians", "PARECO", "Kashmir insurgents… #> $ number_of_sources <dbl> 7, -1, -1, -1, -1, -1, -1, 8, -1, -1, -1, -1, -1, -… #> $ source_article <chr> "\"Agence France Presse,2013-01-12,French pilot kil… #> $ source_office <chr> "Agence France Presse;Agence France Presse;Agence F… #> $ source_date <chr> "2013-01-12;2013-01-28;2013-01-12;2013-01-12;2013-0… #> $ source_headline <chr> "French pilot killed in Mali helicopter raid: defen… #> $ source_original <chr> "French Defence Minister Jean-Yves Le Drian; resid… #> $ where_prec <dbl> 1, 1, 2, 1, 3, 3, 4, 1, 1, 1, 4, 2, 3, 2, 3, 1, 1, … #> $ where_coordinates <chr> "Konna town", "Gobu village", "Ngungu village", "Ch… #> $ adm_1 <chr> "Mopti region", "Ituri province", "Nord Kivu provin… #> $ adm_2 <chr> "Mopti cercle", "Djugu territory", "Masisi territor… #> $ latitude <dbl> 14.943290, 1.769722, -1.651944, 34.378934, 34.37260… #> $ longitude <dbl> -3.89474, 30.77583, 28.87694, 74.72549, 74.16729, 4… #> $ geom_wkt <chr> "POINT (-3.894740 14.943290)", "POINT (30.775833 1.… #> $ priogrid_gid <dbl> 150833, 132182, 127138, 179070, 179069, 184761, 167… #> $ country <chr> "Mali", "DR Congo (Zaire)", "DR Congo (Zaire)", "In… #> $ country_id <dbl> 432, 490, 490, 750, 750, 640, 750, 490, 520, 483, 6… #> $ region <chr> "Africa", "Africa", "Africa", "Asia", "Asia", "Midd… #> $ event_clarity <dbl> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, … #> $ date_prec <dbl> 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, … #> $ date_start <date> 2013-01-11, 2004-01-14, 2007-12-13, 2008-03-04, 20… #> $ date_end <date> 2013-01-12, 2004-01-16, 2007-12-18, 2008-03-05, 20… #> $ deaths_a <dbl> 12, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,… #> $ deaths_b <dbl> 16, 0, 0, 2, 11, 13, 0, 0, 0, 2, 2, 0, 8, 0, 10, 0,… #> $ deaths_civilians <dbl> 3, 200, 4, 0, 0, 0, 1, 0, 0, 0, 0, 6, 0, 0, 0, 0, 1… #> $ deaths_unknown <dbl> 0, 0, 0, 0, 0, 0, 0, 80, 11, 0, 0, 0, 17, 0, 0, 16,… #> $ low <dbl> 31, 100, 4, 2, 12, 13, 1, 70, 11, 2, 2, 6, 25, 0, 1… #> $ best <dbl> 31, 200, 4, 2, 12, 13, 1, 80, 11, 2, 2, 6, 25, 0, 1… #> $ high <dbl> 50, 200, 4, 2, 12, 30, 1, 80, 11, 72, 19, 6, 25, 7,…